Social Behavior Rodents

PUBLICATIONS

Modeling Human Sexual Motivation in Rodents: Some Caveats

Frontiers in behavioral neurosciences

2014-01-01

Sexual behavior is activated by motivation. An overwhelming majority of experimental studies of the intricacies of sexual motivation has been performed in rodents, most of them in rats. Sometimes it is desirable to generalize results obtained in this species to other species, particularly the human. It is hoped that studies of the neurobiology of rodent sexual behavior may shed light on the central nervous mechanisms operating in the human, and the search for efficient pharmacological treatments of human sexual dysfunctions relies partly on studies performed in rodents. Then the issue of generalizability of the rodent data to the human becomes crucial. We emphasize the importance of distinguishing between copulatory acts, behavior involving the genitals, and the preceding event, the establishment of physical contact with a potential mate. Comparisons between the structure of copulatory behavior in rats and humans show abysmal differences, but there may be some similarity in the underlying mechanisms. The endocrine control of sex behavior is shortly mentioned, and we also compare the effects of the few drugs known to affect both rodent and human copulatory behavior. The stimuli activating sexual motivation, often called desire in the human literature, are examined, and the sexual approach behaviors in rats and humans are compared. There is a striking similarity between these species in how these behaviors respond to drugs. It is then shown that the intensity of sexual approach is unrelated to the intensity of copulatory behavior. Even though the approach is a requisite for copulation, an activity that requires at least two individuals in close physical contact, these two aspects of sexuality do not covary. This is similar to the role of the testosterone in men and male rats: although the hormone is needed for sex behavior, there is no correlation between serum testosterone concentration and the intensity of copulation. It is also pointed out that human sexual behavior is mostly determined by social conventions, whereas this is not the case in rats and other rodents. It is concluded that some observations in rats can be generalized to the human, but extreme caution must be exercised.

 

Link to the publication : https://search.proquest.com/openview/5d95e1135614188dcc2e2e68e137ba85/1?pq-origsite=gscholar&cbl=2046456

ONEIROS, a new miniature standalone device for recording sleep electrophysiology, physiology, temperatures and behavior in the lab and field

2018-01-01

HIGHLIGHTS:
 ONEIROS is a new miniature device with low power consumption dedicated to recording sleep
 The device can record sleep electrophysiology, physiology, and behavior in the lab or field
 An integrated vibrating motor can be used to assess arousal thresholds and perform selective paradoxical sleep
deprivation

Topographical memory analyzed in mice using the Hamlet Test, a novel complex maze

Neurobiology of Learning and Memory

2018-02-16

Highlights

The Hamlet test is a novel complex environment for testing topographic memory in mice.

Exploration and memory differ in different mouse strains but not gender.

The hippocampus-subiculum-parahippocampal gyrus axis and dopaminergic structures are activated.

Training increased hippocampal neurogenesis (cell proliferation and neuronal maturation).

Topographical disorientation was measured in the Hamlet test using a pharmacological model of Alzheimer's disease.


Abstract

The Hamlet test is an innovative device providing a complex environment for testing topographic memory in mice. Animals were trained in groups for weeks in a small village with a central agora, streets expanding from it towards five functionalized houses, where they can drink, eat, hide, run, interact with a stranger mouse. Memory was tested by depriving mice from water or food and analyzing their ability to locate the Drink/Eat house. Exploration and memory were analysed in different strains, gender, and after different training periods and delays. After 2 weeks training, differences in exploration patterns were observed between strains, but not gender. Neuroanatomical structures activated by training, identified using FosB/ΔFosB immunolabelling, showed an involvement of the hippocampus-subiculum-parahippocampal gyrus axis and dopaminergic structures. Training increased hippocampal neurogenesis (cell proliferation and neuronal maturation) and modified the amnesic efficacy of muscarinic or nicotinic cholinergic antagonists. Moreover, topographical disorientation in Alzheimer's disease was addressed using intracerebroventricular injection of amyloid β25-35 peptide in trained mice. When retested after 7 days, Aβ25-35-treated mice showed memory impairment. The Hamlet test specifically allows analysis of topographical memory in mice, based on complex environment. It offers an innovative tool for various ethological or pharmacological research needs. For instance, it allows to examine topographical disorientation, a warning sign in Alzheimer's disease.

 

Link to the publication :

 

https://www.sciencedirect.com/science/article/pii/S1074742718300340

Gamma Oscillation Dysfunction in mPFC Leads to Social Deficits in Neuroligin 3 R451C Knockin Mice

Neuron

2018-03-01

Summary

Neuroligins (NLs) are critical for synapse formation and function. NL3 R451C is an autism-associated mutation. NL3 R451C knockin (KI) mice exhibit autistic behavioral abnormalities, including social novelty deficits. However, neither the brain regions involved in social novelty nor the underlying mechanisms are clearly understood. Here, we found decreased excitability of fast-spiking interneurons and dysfunction of gamma oscillation in the medial prefrontal cortex (mPFC), which contributed to the social novelty deficit in the KI mice. Neuronal firing rates and phase-coding abnormalities were also detected in the KI mice during social interactions. Interestingly, optogenetic stimulation of parvalbumin interneurons in the mPFC at 40 Hz nested at 8 Hz positively modulated the social behaviors of mice and rescued the social novelty deficit in the KI mice. Our findings suggest that gamma oscillation dysfunction in the mPFC leads to social deficits in autism, and manipulating mPFC PV interneurons may reverse the deficits in adulthood.


Keywords

Autism ; Neuroligin 3 ; social novelty ; mPFC ; gamma oscillation ; PV interneuron ; excitability ; optogenetic ; stimulation

 

https://www.sciencedirect.com/science/article/pii/S0896627318301004

LIT-001, the First Nonpeptide Oxytocin Receptor Agonist that Improves Social Interaction in a Mouse Model of Autism

Journal of Medicinal Chemistry

2018-09-10

ABSTRACT :

Oxytocin (OT) and its receptor (OT-R) are implicated in the etiology of autism spectrum disorders (ASD), and OT-R is a potential target for therapeutic intervention. Very few nonpeptide oxytocin agonists have currently been reported. Their molecular and in vivo pharmacology remain to be clarified, and none of them has been shown to be efficient in improving social interaction in animal models relevant to ASD. In an attempt to rationalize the design of centrally active nonpeptide full agonists, we studied in a systematic way the structural determinants of the affinity and efficacy of representative ligands of the V1a and V2 vasopressin receptor subtypes (V1a-R and V2-R) and of the oxytocin receptor. Our results confirm the subtlety of the structure–affinity and structure–efficacy relationships around vasopressin/oxytocin receptor ligands and lead however to the first nonpeptide OT receptor agonist active in a mouse model of ASD after peripheral ip administration.

Link to the publication : https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.8b00697

Striatal cholinergic interneurons regulate cognitive and affective dysfunction in partially dopamine‐depleted mice

European Journal of Neuroscience

2018-09-19

Abstract

Early non‐motor symptoms such as mood disorders and cognitive deficits are increasingly recognised in Parkinson's disease (PD). They may precede the characteristic motor symptomatology caused by dopamine (DA) neuronal loss in the substantia nigra pars compacta (SNc). It is well known that striatal cholinergic interneurons (ChIs) are emerging as key regulators of PD motor symptom, however, their involvement in the cognitive and affective alterations occurring in the premotor phase of PD is poorly understood. We used optogenetic photoinhibition of striatal ChIs in mice with mild nigrostriatal 6‐hydroxydopamine (6‐OHDA) lesions and assessed their role in anxiety‐like behaviour in the elevated plus maze, social memory recognition of a congener and visuospatial object recognition. In transgenic mice specifically expressing halorhodopsin (eNpHR) in cholinergic neurons, striatal ChIs photoinhibition reduced the anxiety‐like behaviour and reversed social and spatial short‐term memory impairment induced by moderate DA depletion (e.g., 50% loss of tyrosine hydroxylase TH‐positive neurons in the SNc). Systemic injection of telenzepine (0.3 mg/kg), a preferential M1 muscarinic cholinergic receptors antagonist, improved anxiety‐like behaviour, social memory recognition but not spatial memory deficits. Our results suggest that dysfunction of the striatal cholinergic system may play a role in the short‐term cognitive and emotional deficits of partially DA‐depleted mice. Blocking cholinergic activity with M1 muscarinic receptor antagonists may represent a possible therapeutic target, although not exclusive, to modulate these early non‐motor deficits.

Link to the publication :

https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14153

Altered social behavior in mice carrying a cortical Foxp2 deletion

Human Molecular Genetics

2018-10-23

Abstract

Genetic disruptions of the forkhead box transcription factor FOXP2 in humans cause an autosomal-dominant speech and language disorder. While FOXP2 expression pattern are highly conserved, its role in specific brain areas for mammalian social behaviors remains largely unknown. Here we studied mice carrying a homozygous cortical Foxp2 deletion. The postnatal development and gross morphological architecture of mutant mice was indistinguishable from wildtype (WT) littermates. Unbiased behavioral profiling of adult mice revealed abnormalities in approach behavior towards conspecifics as well as in the reciprocal responses of WT interaction partners. Furthermore mutant mice showed alterations in acoustical parameters of ultrasonic vocalizations (USV), which also differed in function of the social context. Cell type-specific gene expression profiling of cortical pyramidal neurons revealed aberrant regulation of genes involved in social behavior. In particular Foxp2 mutants showed the downregulation of Mint2 (Apba2), a gene involved in approach behavior in mice and autism spectrum disorder in humans. Taken together these data demonstrate that cortical Foxp2 is required for normal social behaviors in mice.

 

Link to the publication :

https://academic.oup.com/hmg/advance-article/doi/10.1093/hmg/ddy372/5142927

Transgenerational transmission of enhanced ocular dominance plasticity from enriched mice to their non-enriched offspring

eNeuro

2019-01-21

Abstract
In recent years, evidence has accumulated that non-Mendelian transgenerational inheritance of qualities acquired through experience is possible. In particular, it has been shown that raising rodents in a so-called enriched environment (EE) can not only modify the animals’ behaviour and increase their susceptibility to activity-dependent neuronal network changes, but also influences both behaviour and neuronal plasticity of the non-enriched offspring. Here, we tested whether such a transgenerational transmission can also be observed in the primary visual cortex (V1) using ocular dominance (OD) plasticity after monocular deprivation (MD) as a paradigm. While OD-plasticity after 7 days of MD is absent in standard-cage (SC) raised mice beyond postnatal day (P) 110, it is present lifelong in EE-raised mice. Using intrinsic signal optical imaging to visualize cortical activity, we confirm these previous observations
12 and additionally show that OD-plasticity is not only preserved in adult EE-mice but also in their adult non-enriched offspring: mice born to enriched parents, but raised in SCs at least until P110 displayed similar OD-shifts towards the open eye after 7 days of MD as age matched EE-raised animals. Furthermore, testing the offspring of EE-female versus EE-males with SC-mating partners revealed that only pups of EE-females, but not of EE-males, preserved OD-plasticity into adulthood, suggesting that the life experiences of the mother have a greater impact on the continued V1-plasticity of the offspring. The OD-plasticity of the non-enriched pups of EE-mothers was, however, mechanistically different from that of non enriched pups of EE-parents or EE-mice.

The relevance of a rodent cohort in the consortium on individual development

Developmental Cognitive Neuroscience

2019-08-26

Abstract

One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.

 

Link to the publication :

https://www.sciencedirect.com/science/article/pii/S1878929320300967

Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity

Nature Medecine

2019-09-09

Abstract

Psychological distress has long been suspected to influence cancer incidence and mortality. It remains largely unknown whether and how stress affects the efficacy of anticancer therapies. We observed that social defeat caused anxiety-like behaviors in mice and dampened therapeutic responses against carcinogen-induced neoplasias and transplantable tumors. Stress elevated plasma corticosterone and upregulated the expression of glucocorticoid-inducible factor Tsc22d3, which blocked type I interferon (IFN) responses in dendritic cell (DC) and IFN-γ+ T cell activation. Similarly, close correlations were discovered among plasma cortisol levels, TSC22D3 expression in circulating leukocytes and negative mood in patients with cancer. In murine models, exogenous glucocorticoid injection, or enforced expression of Tsc22d3 in DC was sufficient to abolish therapeutic control of tumors. Administration of a glucocorticoid receptor antagonist or DC-specific Tsc22d3 deletion reversed the negative impact of stress or glucocorticoid supplementation on therapeutic outcomes. Altogether, these results indicate that stress-induced glucocorticoid surge and Tsc22d3 upregulation can subvert therapy-induced anticancer immunosurveillance.

 

Link to the publication : https://www.nature.com/articles/s41591-019-0566-4

Antidepressant efficacy of a selective organic cation transporter blocker in a mouse model of depression

Molecular Psychiatry

2019-10-16

Abstract

Current antidepressants act principally by blocking monoamine reuptake by high-affinity transporters in the brain. However, these antidepressants show important shortcomings such as slow action onset and limited efficacy in nearly a third of patients with major depression disorder. Here, we report the development of a prodrug targeting organic cation transporters (OCT), atypical monoamine transporters recently implicated in the regulation of mood. Using molecular modeling, we designed a selective OCT2 blocker, which was modified to increase brain penetration. This compound, H2-cyanome, was tested in a rodent model of chronic depression induced by 7-week corticosterone exposure. In male mice, prolonged administration of H2-cyanome induced positive effects on several behaviors mimicking symptoms of depression, including anhedonia, anxiety, social withdrawal, and memory impairment. Importantly, in this validated model, H2-cyanome compared favorably with the classical antidepressant fluoxetine, with a faster action on anhedonia and better anxiolytic effects. Integrated Z-scoring across these depression-like variables revealed a lower depression score for mice treated with H2-cyanome than for mice treated with fluoxetine for 3 weeks. Repeated H2-cyanome administration increased ventral tegmental area dopaminergic neuron firing, which may underlie its rapid action on anhedonia. H2-cyanome, like fluoxetine, also modulated several intracellular signaling pathways previously involved in antidepressant response. Our findings provide proof-of-concept of antidepressant efficacy of an OCT blocker, and a mechanistic framework for the development of new classes of antidepressants and therapeutic alternatives for resistant depression and other psychiatric disturbances such as anxiety.

 

Link to the publication : 

https://www.nature.com/articles/s41380-019-0548-4

Pro-social preference in an automated operant two-choice reward task under different housing conditions: Exploratory studies on pro-social decision making

Developmental Cognitive Neuroscience

2020-07-18

Abstract

In this study, we aimed to develop a behavioral task that measures pro-social decision making in rats. A fully automated, operant pro-social two-choice task is introduced that quantifies pro-social preferences for a mutual food reward in a set-up with tightly controlled task contingencies. Pairs of same-sex adult Wistar rats were placed in an operant chamber divided into two compartments (one rat per compartment), separated by a transparent barrier with holes that allowed the rats to see, hear, smell, but not touch each other. Test rats could earn a sucrose pellet either for themselves (own reward) or for themselves and the partner (both reward) by means of lever pressing. On average, male rats showed a 60 % preference for the lever that yielded a food reward for both themselves and their partner. In contrast, females did not show lever preference, regardless of the estrous cycle phase. Next, the impact of juvenile environmental factors on male rat social decision making was studied. Males were group-housed from postnatal day 26 onwards in complex housing Marlau™ cages that provided social and physical enrichment and stimulation in the form of novelty. Complex housed males did not show a preference for the pro-social lever.

Link to the publication : 

https://www.sciencedirect.com/science/article/pii/S187892932030075X

Sigma-1 (σ1) receptor activity is necessary for physiological brain plasticity in mice

European Neuropsychopharmacology

2020-09-03

Abstract

The sigma-1 receptor (S1R) is a membrane-associated protein expressed in neurons and glia at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs). S1R interacts with different partners to regulate cellular responses, including ER stress, mitochondrial physiology and Ca2+ fluxes. S1R shapes cellular plasticity by directly modulating signaling pathways involved in inflammatory responses, cell survival and death. We here analyzed its impact on brain plasticity in vivo, in mice trained in a complex maze, the Hamlet test. The device, providing strong enriched environment (EE) conditions, mimics a small village. It has a central agora and streets expanding from it, leading to functionalized houses where animals can Drink, Eat, Hide, Run, or Interact. Animals were trained in groups, 4 h/day for two weeks, and their maze exploration and topographic memory could be analyzed. Several groups of mice were considered: non-trained vs. trained; repeatedly administered with saline vs. NE-100, a selective S1R antagonist; and wildtype vs. S1R KO mice. S1R inactivation altered maze exploration and prevented topographic learning. EE induced a strong plasticity measured through resilience to behavioral despair or to the amnesic effects of scopolamine, and increases in S1R expression and bdnf mRNA levels in the hippocampus; increases in neurogenesis (proliferation and maturation); and increases of histone acetylation in the hippocampus and cortex. S1R inactivation altered all these parameters significantly, showing that S1R activity plays a major role in physiological brain plasticity. As S1R is a major resident protein in MAMs, modulating ER responses and mitochondrial homeostasy, MAM physiology appeared impacted by enriched environment.

 

Link to the publication : 

https://www.sciencedirect.com/science/article/abs/pii/S0924977X20302601

Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies

Progress in Neuropsychopharmacology & Biological Psychiatry

2020-10-06

Highlights

• Syn triple knockout (TKO) mice display hyperactivity and impaired social behavior.
• TKO mice show reduced dorsal raphe serotonergic neuronal activity.
• TKO mice have lower hippocampal serotonin levels.
• TKO mice are a model of humans diseases associated with Syn dysfunctions.

Abstract

Synapsins (Syns) are a family of phosphoproteins associated with synaptic vesicles (SVs). Their main function is to regulate neurotransmitter release by maintaining a reserve pool of SVs at the presynaptic terminal. Previous studies reported that the deletion of one or more Syn genes in mice results in an epileptic phenotype and autism-related behavioral abnormalities. Here we aimed at characterizing the behavioral phenotype and neurobiological correlates of the deletion of Syns in a Syn triple knockout (TKO) mouse model. Wild type (WT) and TKO mice were tested in the open field, novelty suppressed feeding, light-dark box, forced swim, tail suspension and three-chamber sociability tests. Using in vivo electrophysiology, we recorded the spontaneous activity of dorsal raphe nucleus (DRN) serotonin (5-HT) and ventral tegmental area (VTA) dopamine (DA) neurons. Levels of 5-HT and DA in the frontal cortex and hippocampus of WT and TKO mice were also assessed using a High-Performance Liquid Chromatography. TKO mice displayed hyperactivity and impaired social and anxiety-like behavior. Behavioral dysfunctions were accompanied by reduced firing activity of DRN 5-HT, but not VTA DA, neurons. TKO mice also showed increased responsiveness of DRN 5-HT-1A autoreceptors, measured as a reduced dose of the 5-HT-1A agonist 8-OH-DPAT necessary to inhibit DRN 5-HT firing activity by 50%. Finally, hippocampal 5-HT levels were lower in TKO than in WT mice. Overall, Syns deletion in mice leads to a reduction in DRN 5-HT firing activity and hippocampal 5-HT levels along with behavioral alterations reminiscent of human neuropsychiatric conditions associated with Syn dysfunction.

 

Link to the publication :

https://www.sciencedirect.com/science/article/abs/pii/S0278584620304516