Organophosphorus diisopropylfluorophosphate (DFP) intoxication in zebrafish larvae causes behavioral defects, neuronal hyperexcitation and neuronal death

Authors : 

Abstract

With millions of intoxications each year and over 200,000 deaths, organophosphorus (OP) compounds are an important public health issue worldwide. OP poisoning induces cholinergic syndrome, with respiratory distress, hypertension, and neuron damage that may lead to epileptic seizures and permanent cognitive deficits. Existing countermeasures are lifesaving but do not prevent long-lasting neuronal comorbidities, emphasizing the urgent need for animal models to better understand OP neurotoxicity and identify novel antidotes. Here, using diisopropylfluorophosphate (DFP), a prototypic and moderately toxic OP, combined with zebrafish larvae, we first showed that DFP poisoning caused major acetylcholinesterase inhibition, resulting in paralysis and CNS neuron hyperactivation, as indicated by increased neuronal calcium transients and overexpression of the immediate early genes fosab, junBa, npas4b, and atf3. In addition to these epileptiform seizure-like events, DFP-exposed larvae showed increased neuronal apoptosis, which were both partially alleviated by diazepam treatment, suggesting a causal link between neuronal hyperexcitation and cell death. Last, DFP poisoning induced an altered balance of glutamatergic/GABAergic synaptic activity with increased NR2B-NMDA receptor accumulation combined with decreased GAD65/67 and gephyrin protein accumulation. The zebrafish DFP model presented here thus provides important novel insights into the pathophysiology of OP intoxication, making it a promising model to identify novel antidotes.

 

Link to publication : https://www.nature.com/articles/s41598-020-76056-8